Red Huang

Red Huang

uva 10451

有點無聊的公式解

n 邊形的面積為

Deg : A=\frac{nt^2sin(\frac{360}{n})}{4(1-cos(\frac{360}{n}))}

邊長為_a_ 的正多邊形的內切圓半徑為:

r_n = \frac{a}{2} \cot(\frac{\pi}{n})

邊長為_a_的正_n_ 邊形外接圓的半徑為:

R_n = \frac{a}{2\sin(\frac{\pi}{n})}

參考自維基百科

//====================================================================||  
//                        Name  : Ancient Village Sports.cpp                             ||  
//                     Date : May 31, 2013 8:09:14 PM                         ||  
//                         Author : GCA                               ||  
//                  6AE7EE02212D47DAD26C32C0FE829006                  ||  
//====================================================================||  
#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <algorithm>  
#include <cmath>  
#include <climits>  
#include <vector>  
#include <set>  
#include <map>  
#include <queue>  
#include <cctype>  
#include <utility>  
using namespace std;  
#ifdef ONLINE\_JUDGE  
#define ll "%lld"  
#else  
#define ll "%I64d"  
#endif  
typedef unsigned int uint;  
typedef long long int Int;  
#define Set(a,s) memset(a,s,sizeof(a))  
#define Write(w) freopen(w,"w",stdout)  
#define Read(r) freopen(r,"r",stdin)  
#define Pln() printf("\\n")  
#define I\_de(x,n)for(int i=0;i<n;i++)printf("%d ",x\[i\]);Pln()  
#define De(x)printf(#x"%d\\n",x)  
#define For(i,x)for(int i=0;i<x;i++)  
#define CON(x,y) x##y  
#define Pmz(dp,nx,ny)for(int hty=0;hty<ny;hty++){for(int htx=0;htx<nx;htx++){\\  
    printf("%d ",dp\[htx\]\[hty\]);}Pln();}  
#define M 55  
#define PII pair<int,int\>  
#define PB push\_back  
#define oo INT\_MAX  
#define Set\_oo 0x3f  
#define Is\_debug true  
#define debug(...) if(Is\_debug)printf("DEBUG: "),printf(\_\_VA\_ARGS\_\_)  
#define FOR(it,c) for(\_\_typeof((c).begin()) it=(c).begin();it!=(c).end();it++)  
#define eps 1e-6  
bool xdy(double x,double y){return x>y+eps;}  
bool xddy(double x,double y){return x>y-eps;}  
bool xcy(double x,double y){return x<y-eps;}  
bool xcdy(double x,double y){return x<y+eps;}  
int min3(int x,int y,int z){  
    int tmp=min(x,y);  
    return min(tmp,z);  
}  
int max3(int x,int y,int z){  
    int tmp=max(x,y);  
    return max(tmp,z);  
}  
double pi=acos(0)\*2;  
double cot(double x){  
    return 1/tan(x);  
}  
int main() {  
    ios\_base::sync\_with\_stdio(0);  
    double a;  
    int n;  
    int ff=0;  
    while(~scanf("%d %lf",&n,&a)&&n>=3){  
        double dn=n\*1.0;  
        double b=sqrt((a\*4\*(1-cos(2\*pi/dn)))/(n\*sin(2\*pi/dn)));  
        double outsider=b/(2\*sin(pi/(n\*1.0)));  
        double outsidea=outsider\*outsider\*pi;  
        double insider=(b/2)\*cot(pi/(n\*1.0));  
        double insidea=insider\*insider\*pi;  
//        debug("%f %f %f %f\\n",outsidea,insidea,a,b);  
        printf("Case %d: %.5f %.5f\\n",++ff,outsidea-a,a-insidea);  
    }  
}  
載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。